PERTANIKA JOURNAL OF SOCIAL SCIENCES AND HUMANITIES

 

e-ISSN 2231-8534
ISSN 0128-7702

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Social Science and Humanities, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Ahlers, L. R. H., & Goodman, A. G. (2018). The immune responses of the animal hosts of West Nile virus: A comparison of insects, birds, and mammals. Frontiers in Cellular and Infection and Microbiology, 8, 96. https://doi.org/10.3389/fcimb.2018.00096

  • Ain-Najwa, M. Y., Yasmin, A. R., Omar, A. R., Arshad, S. S., Abu, J., Mohammed, H. O., Kumar, K., Loong, S. K., Rovie-Ryan, J. J., & Mohd-Kharip-Shah, A.-K. (2020). Evidence of West Nile virus infection in migratory and resident wild birds in west coast of peninsular Malaysia. One Health, 10, 100134. https://doi.org/10.1016/j.onehlt.2020.100134

  • Allen, N. (2020). West Nile virus outbreak kills two in southern Spain. Reuters. https://www.reuters.com/article/us-health-nile-fever-spain/west-nile-virus-outbreak-kills-two-in-southern-spain-idINKBN25H1KY

  • American Mosquito Control Association. (2018). Mosquito biology. AMCA. https://www.mosquito.org/page/mosquitoinfo

  • Anderson, J. F., & Main, A. J. (2006). Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the Northeastern United States. The Journal of Infectious Diseases, 194(11), 1577-1599. https://doi.org/10.1086/508754

  • Anderson, S. L., Richards, S. L., & Smartt, C. T. (2010). A simple method for determining arbovirus transmission in mosquitoes. Journal of the American Mosquito Control Association, 26(1), 108-111. https://doi.org/10.2987/09-5935.1

  • Asnis, D. S., Conetta, R., Waldman, G., & Teixeira, A. A. (2006). The West Nile virus encephalitis outbreak in the United States (1999-2000): From flushing, New York, to beyond its borders. Annals of the New York Academy of Sciences, 951(1), 161-171. https://doi.org/10.1111/j.1749-6632.2001.tb02694.x

  • Balenghien, T., Vazeille, M., Grandadam, M., Schaffner, F., Zeller, H., Reiter, P., Sabatier, P., Fouque, F., & Bicout, D. J. (2008). Vector competence of some French Culex and Aedes mosquitoes for West Nile virus. Vector-Borne and Zoonotic Diseases, 8(5), 589-596. https://doi.org/10.1089/vbz.2007.0266

  • Bashar, K., Rahman, M. S., Nodi, I. J., & Howlader, A. J. (2016). Species composition and habitat characterization of mosquito (Diptera: Culicidae) larvae. Pathogen and Global Health, 110(2), 48-61. https://doi.org/10.1080/20477724.2016.1179862

  • Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., & Kaiser, A. (2010). Mosquito and their control. Springer. https://doi.org/10.1007/978-3-540-92874-4

  • Benbetka, S., Hachid, A., Benallal, K. E., Benbetka, C., Khaldi, A., Bitam, I., & Harrat, Z. (2018). First field evidence infection of Culex perexiguus by West Nile virus in Sahara Oasis of Algeria. Journal of Vector Borne Diseases, 55(4), 305-309. https://doi.org/10.4103/0972-9062.256566

  • Blagrove, M. S., Sherlock, K., Chapman, G. E., Impoinvil, D. E., McCall, P. J., Medlock, J. M., Lycett, G., Solomon, T., & Baylis, M. (2016). Evaluation of the vector competence of a native UK mosquito Ochlerotatus detritus (Aedes detritus) for dengue, chikungunya and West Nile viruses. Parasites and Vectors, 9, 452. https://doi.org/10.1186/s13071-016-1739-3

  • Bolling, B. G., Weaver, R. B., Tesh, R. B., & Vasilakis, N. (2015). Insect-specific virus discovery: Significance for the arbovirus community. Viruses, 7(9), 4911-4928. https://doi.org/10.3390/v7092851

  • Bowen, E. T. W., Simpson, D. I. H., Platt, G. S., Way, H. J., Gordon-Smith, C. E., Ching, C. Y., & Casals, J. (1970). Arbovirus infections in Sarawak: The isolation of Kunjin virus from mosquitoes of the Culex pseudovishnui group. Annals of Tropical Medicine and Parasitology, 64(3), 263-268.

  • Boyer, S., Luciano, T. M., Randriamaherijaona, S., Andrianaivolambo, L., & Cardinale, E. (2014). Mosquitoes sampling strategy for studying West Nile virus vectors in Madagascar: Abundance, distribution and methods of catching in high risk areas. Archives de I’Institut Pasteur De Madagascar, 71, 1–4.

  • Brustolin, M., Talavera, S., Santamaría, C., Rivas, R., Pujol, N., Aranda, C., Marquès, E., Valle, M., Verdún, M., Pagès, N., & Busquets, N. (2016). Culex pipiens and Stegomyia albopicta (= Aedes albopictus) populations as vectors for lineage 1 and 2 West Nile virus in Europe. Medical and Veterinary Entomology, 30(2), 166-173. https://doi.org/10.1111/mve.12164

  • Burkett-Cadena, N. D., & Vittor, A. Y. (2018). Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic and Applied Ecology, 26, 101-110. https://doi.org/10.1016/j.baae.2017.09.012

  • Centers for Disease Control and Prevention. (2016). Mosquito species in which West Nile virus has been detected, United States, 1999-2016. CDC. https://www.cdc.gov/westnile/resources/pdfs/MosquitoSpecies1999-2016.pdf

  • Chancey, C., Grinev, A., Volkova, E., & Rios, M. (2015). The global ecology and epidemiology of West Nile virus. BioMed Research International, 2015, 376230. https://doi.org/10.1155/2015/376230

  • Cheng, G., Liu, Y., Wang, P., & Xiao, X. (2016) Mosquito defense strategies against viral infection. Trends in Parasitology, 32(3), 177-186. https://doi.org/10.1016/j.pt.2015.09.009

  • Ciota, A. T., Styer, L. M., Meola, M. A., & Kramer, L. D. (2011) The costs of infection and resistance as determinants of West Nile virus susceptibility in Culex mosquitoes. BMC Ecology, 11, 23. https://doi.org/10.1186/1472-6785-11-23

  • Colpitts, T. M., Conway, M. J., Montgomery, J. J., & Fikrig, E. (2012). West Nile virus: Biology, transmission, and human infection. Clinical Microbiology Reviews, 25(4), 635–648. https://doi.org/10.1128/CMR.00045-12

  • Deichmeister, J. M., & Telang, A. (2011). Abundance of West Nile virus mosquito vectors in relation to climate and landscape variables. Journal of Vector Ecology, 36(1), 75-85. https://doi.org/10.1111/j.1948-7134.2011.00143.x

  • Diaz-Nieto, L. M., D’Aleessio, C., Perotti, M. A., & Berón, C. M. (2016). Culex pipiens development is greatly influenced by native bacteria and exogenous yeast. PLOS One, 11(4), e0153133. https://doi.org/10.1371/journal.pone.0153133

  • DiMenna, M. A., Bueno, R., Parmenter, R. R., Norris, D. E., Sheyka, J. M., Molina, J. L., LaBeau, E. M., Hatton, E. S., & Glass, G. E. (2006). Emergence of West Nile virus in mosquito (Diptera: Culicidae) communities of the New Mexico Rio Grande Valley. Journal of Medical Entomology, 43(3), 594-599. https://doi.org/10.1603/0022-2585(2006)43[594:EOWNVI]2.0.CO;2

  • Dohm, D. J., Sardelis, M. R., & Turell, M. J. (2002). Experimental vertical transmission of West Nile virus by Culex pipiens (Diptera: Culicidae). Journal of Medical Entomology, 39(4),640-644. https://doi.org/10.1603/0022-2585-39.4.640

  • Eastwood, G., Kramer, L. D., Goodman, S. J., & Cunningham, A. A. (2011). West Nile virus vector competency of Culex quinquefasciatus mosquitoes in the Galápagos Islands. The American Journal of Tropical Medicine and Hygiene, 85(3), 426-433. https://doi.org/10.4269/ajtmh.2011.10-0739

  • Ebi, K. L., & Nealon, J. (2016). Dengue in a changing climate. Environmental Research, 151, 115-123. https://doi.org/10.1016/j.envres.2016.07.026

  • Epstein P. R. (2001). West Nile virus and the climate. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 78(2), 367–371. https://doi.org/10.1093/jurban/78.2.367

  • Farajollahi, A., Fonseca, D. M., Kramer, L. D., & Kilpatrick, A. M. (2011). Bird biting mosquito and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infection Genetics and Evolutions, 78(2), 1577-1585. https://doi.org/10.1016/j.meegid.2011.08.013

  • Farnesi, L. C., Vargas, H. C. M., Valle, D., & Rezende, G. L., (2017). Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLOS Neglected Tropical Disease, 11(10), e0006063. https://doi.org/10.1371/journal.pntd.0006063

  • Goddard, L. B., Roth, A. E., Reisen, W. K., & Scott, T. W. (2003). Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. Journal of Medical Entomology, 40(6), 743–746. https://doi.org/10.1603/0022-2585-40.6.743

  • Gomes, B., Sousa, C. A., Vicente, J. L., Pinho, L., Calderón, I., Arez, E., Almeida, A. P. G., Donnelly, M. J., & Pinto, J. (2013). Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization. Parasites and Vectors, 6, 93. https://doi.org/10.1186/1756-3305-6-93

  • Ha, Y.-R., Oh, S.-R., Seo, E.-S., Kim, B.-H., Lee, D.-K., & Lee S.-J. (2014). Detection of heparin in the salivary gland and midgut of Aedes togoi. The Korean Journal of Parasitology, 52(2), 183-188. https://doi.org/10.3347/kjp.2014.52.2.183

  • Hamer, G. L., Kitron, U. D., Goldberg, T. L., Brawn, J. D., Loss, S. R., Ruiz, M. O., Hayes D. B., & Walker, E. D. (2009). Host selection by Culex pipiens mosquitoes and West Nile virus amplification. The American Journal of Tropical Medicine and Hygiene, 80(2), 268-278. https://doi.org/10.4269/ajtmh.2009.80.268

  • Hayes, E. B., Komar, N., Nasci, R. S., Montgomery, S. P., O’Leary, D. R., & Campbell, G. L. (2005). Epidemiology and transmission dynamics of West Nile virus disease. Emerging Infectious Diseases, 11(8), 1167-1173. https://doi.org/10.3201/eid1108.050289a

  • Jeffery, J., Rohela, M., Muslimin, M., Abdul Aziz, S. M. N., Jamaiah, I., Kumar, S., Tan, T. C., Lim, Y. A. L., Nissapatorn, V., & Abdul-Azizi, N. M. (2012). Illustrated keys: Some mosquitoes of Peninsula Malaysia, Malaysia. Universiti Malaya Press.

  • Kampen, H., Holicki, C. M., Ziegler, U., Groschup, M. H., Tews, B. A., & Werner, D. (2020). West Nile virus mosquito vectors (Diptera: Culicidae) in Germany. Viruses, 12(5), 493. https://doi.org/10.3390/v12050493

  • Khan, S. A., Chowdhury, P., Choudhury, P., & Dutta, P. (2017). Detection of West Nile virus in six mosquito species in synchrony with seroconversion among sentinel chickens in India. Parasites and Vectors, 10(1), 13. https://doi.org/10.1186/s13071-016-1948-9

  • Kilpatrick, A. M., Meola, M. A., Moudy, R. M., & Kramer, L. D. (2008). Temperature, viral genetics and the transmission of West Nile virus by Culex pipiens mosquitoes. PLOS Pathogen, 4(6), e1000092. https://doi.org/10.1371/journal.ppat.1000092

  • Kitaoka, M. (1950). Experimental transmission of the West Nile virus by the mosquito. The Japanese Medical Journal, 3(2), 77-81. https://doi.org/10.7883/yoken1948.3.77

  • Komar, N., Langevin, S., Hinten, S., Nemeth, N., Edwards, E., Hettler, D., Davis, B., Bowen, R., & Bunning, M. (2003). Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerging Infectious Diseases, 9(3), 311-322. https://doi.org/10.3201/eid0903.020628

  • Komp, W. H. W. (1923). Guide to mosquito identification for field workers engaged in Malaria control in the United States. Public Health Reports, 38(20), 1061-1080. https://doi.org/10.2307/4576745

  • Kong, X. Q., & Wu, C. W. (2010). Mosquito proboscis: An elegant biomicroelectromechanical system. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 82(1), 011910. https://doi.org/10.1103/PhysRevE.82.011910

  • Kramer, L. D., Hardy, J. L., & Presser, S. B. (1983). Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus. The American Journal of Tropical Medicine and Hygiene, 32(5), 1130-1139. https://doi.org/10.4269/ajtmh.1983.32.1130

  • Kweka, E. J., Baraka, V., Mathias, L., Mwang’onde, B., Baraka, G., Lucile, L., & Mahande, A. M., (2018). Ecology of Aedes mosquitoes, the major vectors of arboviruses in human population. In J. A. Falcón-Lezama, M. Betancourt-Cravioto, & R. Tapia-Conyer (Eds.), Dengue fever — A resilient threat in the face of innovation (pp. 39-55). IntechOpen. https://doi.org/10.5772/intechopen.81439

  • Lawler, S. P., & Lanzaro, G. C. (n.d.). Managing mosquitoes on the farm. https://s3.wp.wsu.edu/uploads/sites/2061/2014/01/MosquitosOnTheFarm.pdf

  • Lewis, I. (2020, October 9). Clark Middleton: Twin Peaks and The Blacklist actor dies aged 63 of West Nile virus. Independent. https://www.independent.co.uk/arts-entertainment/tv/news/clark-middleton-death-blacklist-twin-peaks-west-nile-virus-b828450.html

  • Lu, Z., Fu, S.-H., Cao, L., Tang, C.-J., Zhang, S., Li, Z.-X., Tusong, M., Yao, X.-H., Zhang, H.-L., Wang, P.-Y., Wumaier, M., Yuan, X.-Y., Li, M.-H., Zhu, C.-Z., Fu, L.-P., & Liang, G.-L. (2014). Human infection with West Nile virus, Xinjiang, China, 2011. Emerging Infectious Diseases, 20(8), 1421-1423. https://doi.org/10.3201%2Feid2008.131433

  • Manimegalai, K., & Sukanya, S., (2014). Biology of the filarial vector, Culex quinquefasciatus (Diptera: Culicidae). International Journal of Current Microbiology and Applied Sciences, 3(4), 718-724.

  • Maquart, M., Boyer, S., Rakotoharinome, V. M., Ravaomanana, J., Tantely, M. L., Heraud, J., & Cardinale, E. (2016). High prevalence of West Nile virus in domestic birds and detection in 2 new mosquito species in Madagascar. PLOS One, 11(1), e0147589. https://doi.org/10.1371/journal.pone.0147589

  • Marlina, S., Radzi, S. F., Lani, R., Sieng, K. C., Rahim, N. F., Hassan, H., Li-Yen, C., AbuBakar, S., & Zandi, K. (2014). Seroprevalence screening for the West Nile virus in Malaysia’s Orang Asli population. Parasites and Vectors, 7, 597. https://doi.org/10.1186/s13071-014-0597-0

  • Martínez-de la Puente, J., Ferraguti, M., Ruiz, S., Roiz, D., Llorente, F., Pérez-Ramírez, E., Jiménez-Clavero, M. A., Soriguer, R., & Figuerola, J. (2018). Mosquito community influences West Nile virus seroprevalence in wild birds: Implications for the risk of spillover into human populations. Scientific Reports, 8, 2599. https://doi.org/10.1038/s41598-018-20825-z

  • Mateo, R, Xiao, S.-Y., Guzman, H., Lei, H., da Rosa, A. P. T., & Tesh, R. B. (2006). Effects of immunosuppression on West Nile virus infection in hamsters. The American Journal of Tropical Medicine and Hygiene, 75(2), 356-362. https://doi.org/10.4269/ajtmh.2006.75.356

  • Mixão, V., Barriga, D. B., Parreira, R., Novo, M. T., Sousa, C. A., Frontera, E., Venter, M., Braack, L., & Almeida, A. P. G. (2016). Comparative morphological and molecular analysis confirms the presence of the West Nile virus mosquito vector Culex univittatus, in the Siberian peninsula. Parasites and Vectors, 9, 601. https://doi.org/10.1186/s13071-016-1877-7

  • Moudy, R. M., Meola M. A., Morin, L. L., Ebel, G. D., & Kramer, L. D. (2007). A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. American Journal of Tropical Medicine and Hygiene, 77(2), 365-370.

  • Mullen, G. R., & Durden, L. A. (Eds.) (2019). Medical and veterinary entomology (3rd ed.). Academic Press. https://doi.org/10.1016/C2017-0-00210-0

  • Orshan, L., Bin, H., Schnur, H., Kaufman, A., Valinsky, A., Shulman, L., Weiss, L., Mendelson, E., & Pener, H. (2008). Mosquito vectors of West Nile fever in Israel. Journal of Medical Entomology, 45(5), 939-947. https://doi.org/10.1603/0022-2585(2008)45[939:mvownf]2.0.co;2

  • Paz, S. (2015). Climate change impacts on West Nile virus transmission in a global context. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1665), 20130561. https://doi.org/10.1098/rstb.2013.0561

  • Philip, C. B., & Smadel, J. E. (1943). Transmission of West Nile virus by infected Aedes albopictus. Experimental Biology and Medicine, 53(1), 49-50. https://doi.org/10.3181/00379727-53-14180

  • Rappole, J. H., Derrickson, S. R., & Hubálek, Z. (2000). Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerging Infectious Diseases, 6(4), 319-328. https://doi.org/10.3201%2Feid0604.000401

  • Reisen, W. K., Fang, Y., & Martinez, V. M. (2014). Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). Journal of Medical Entomology, 43(2), 309-317. https://doi.org/10.1093/jmedent/43.2.309

  • Ribeiro, J. M. C., & Francischetti, I. M. B. (2003). Role of arthropod saliva in blood feeding: Sialome and post-sialome perspectives. Annual Review of Entomology, 48, 73-88. https://doi.org/10.1146/annurev.ento.48.060402.102812

  • Richards, S. L., Mores, C. N., Lord, C. C., & Tabachnick, W. J. (2007). Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus Say (Diptera: Culicidae) for West Nile virus. Vector Borne for Zoonotic Diseases, 7(4), 629-636. https://doi.org/10.1089/vbz.2007.0101

  • Rizzoli, A., Tagliapietra, V., Cagnacci, F., Marini, G., Arnoldi, D., Rosso, F., & Rosà, R. (2019). Parasites and wildlife in a changing world: The vector-host-pathogen interaction as a learning case. International Journal for Parasitology: Parasites and Wildlife, 9, 394-401. https://doi.org/10.1016/j.ijppaw.2019.05.011

  • Rohani, A., Chan, S. T., Abdullah, A. G., Tanrag, H., & Lee, H. L. (2008). Species composition of mosquito fauna in Ranau, Sabah, Malaysia. Tropical Biomedicine, 25(3), 232-236.

  • Rossi, S. L., Ross, T. M., & Evans, J. D. (2010). West Nile Virus. Clinics in Laboratory Medicine, 30(1), 47-65. https://doi.org/10.1016/j.cll.2009.10.006

  • Rueda, L. M. (2008). Global diversity of mosquitoes (Insecta: Diptera: Culicidaee) in freshwater. Hydrobiologia, 595, 477-487. https://doi.org/10.1007/s10750-007-9037-x

  • Service, M. (2012). Introduction to mosquitoes (Culicidae). In Medical entomology for students (pp. 1-32). Cambridge University Press. https://doi.org/10.1017/CBO9780511811012.005

  • Sim, S., Jupatanakul, N., & Dimopoulos, G. (2014). Mosquito immunity against arboviruses. Viruses, 6(11), 4479–4504. https://doi.org/10.3390/v6114479

  • Smithburn, K. C., Hughes, T. P., Burke, A. W., & Paul, J. H. (1940). A neurotropic virus isolated from the blood of a native of Uganda. The American Journal of Tropical and Medicine and Hygiene, 20, 471-472.

  • Snapinn, K. W., Holmes, E. C., Young, D. S., Bernard, K. A., Kramer, L. D., & Ebel, G. D. (2007). Declining growth rate of West Nile virus in North America. Journal of Virology, 81(5), 2531-2534. https://doi.org/10.1128/JVI.02169-06

  • Styer, L. M., Meola, M. A., & Kramer, L. D. (2007). West Nile virus infection decreases fecundity of Culex tarsalis females. Journal of Medical Entomology, 44(6), 1074-1085. https://doi.org/10.1603/0022-2585(2007)44[1074:wnvidf]2.0.co;2

  • Tandina, F., Doumbo, O., Yaro, A. S., Traoré, S. F., Parola, P., & Robert, V. (2018). Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasites and Vectors, 11, 467. https://doi.org/10.1186/s13071-018-3045-8

  • Taylor, R. M., Hurlbut, H. S., Dressler, H. R., Spangler, E. W., & Thrasher, D. (1953). Isolation of West Nile virus from Culex mosquitoes. The Journal of the Egyptian Medical Association, 36(3), 199-208.

  • Turell, M. J., O’Guinn, M., & Oliver, J. (2000). Potential for New York mosquitoes to transmit West Nile virus. The American Journal of Tropical and Medicine and Hygiene, 62(3), 413-414. https://doi.org/10.4269/ajtmh.2000.62.413

  • Vakali, A., Beleri, S., Tegos, N., Fytrou, A., Mpimpa, A., Sergentanis, T. N., Pervanidou, D., & Patsoula, E. (2022). Entomological surveillance activities in regions in Greece: Data on mosquito species abundance and West Nile virus detection in Culex pipiens pools (2019–2020). Tropical Medicine and Infectious Disease, 8(1), 1. https://doi.org/10.3390/tropicalmed8010001

  • Valiakos, G., Papaspyropoulos, K., Giannakopoulos, A., Birtsas, P., Tsiodras, S., Hutchings, M. R., Spyrou, V., Pervanidou, D., Athanasiou, L.V., Papadopoulos, N., Tsokana, C., Baka, A., Manolakou, K., Chatzpoulos, D., Artois, M., Yon, L., Hannant, D., Petrovska, L., Hadjichristodoulou, C., & Billinis, C. (2014). Use of wild bird surveillance, human case data and GIS spatial analysis for predicting spatial distributions of West Nile virus in Greece. PLOS One, 9(5), e96935. https://doi.org/10.1371/journal.pone.0096935

  • van den Hurk, A. F., Hall-Mendelin, S., Webb, C. E., Tan, C. S. E., Frentiu, F. D., Prow, N. A., & Hall, R. A. (2014). Role of enhanced vector transmission of a new West Nile virus strain in an outbreak of equine disease in Australia in 2011. Parasites and Vectors, 7, 586. https://doi.org/10.1186/s13071-014-0586-3

  • Vogels, C. B. F., Göertz, G. P., Pijlman, G. P., & Koenraadt, C. J. M. (2017). Vector competence of European mosquitoes for West Nile virus. Emerging Microbes and Infections, 6(11), 1-13. https://doi.org/10.1038/emi.2017.82

  • Vora, N. (2008). Impact of anthropogenic environmental alterations on vector-borne diseases. Medscape Journal of Medicine, 10(10), 238.

  • Wanasen N., Nussenzveig, R. H., Champagne, D. E., Soong, L., & Higgs, S. (2004). Differential modulation of murine host immune response by salivary gland extracts from the mosquitoes Aedes aegypti and Culex quinquefasciatus. Medical and Veterinary Entomology, 18(2), 191-199. https://doi.org/10.1111/j.1365-2915.2004.00498.x

  • Xia, H., Wang, Y., Atoni, E., Zhang, B., & Yuan, Z. (2018). Mosquito-associated viruses in China. Virologica Sinica, 33, 5-20. https://doi.org/10.1007/s12250-018-0002-9

  • Zeidner, N. S., Higgs, S., Happ, C. M., Beaty, B. J., & Miller, B. R. (1999). Mosquito feeding modulates Th1 and Th2 cytokines in flavivirus susceptible mice: An effect mimicked by injection of sialokinins, but not demonstrated in flavivirus resistant mice. Parasite Immunology, 21(1), 35-44. https://doi.org/10.1046/j.1365-3024.1999.00199.x

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

J

Download Full Article PDF

Share this article

Recent Articles