e-ISSN 2231-8542
ISSN 1511-3701
Kristene Ling Yong, Hung Hui Chung, Melinda Mei Lin Lau, Ivy Yee Yen Chew, Crystal Jia Jing Lim, Pei Xuan Hew and Siong Fong Sim
Pertanika Journal of Tropical Agricultural Science, Pre-Press
DOI: https://doi.org/10.47836/pjtas.48.4.07
Keywords: α-amylase, antidiabetic, molecular docking, pharmacokinetic, Shorea macrophylla
Published: 2025-05-30
The global rise in diabetes prevalence has intensified the search for effective and safer natural antidiabetic agents. Shorea macrophylla fruits, known for their lipogenesis effects, present a promising avenue. This study explores the antidiabetic properties of S. macrophylla fruits’ crude extracts through in vitro assays for α-amylase and advanced glycation end-products (AGEs) inhibition, alongside molecular docking for inhibitor prediction and in silico pharmacokinetic evaluation. While all extracts exhibited mild inhibitory effects on α-amylase, they are significantly less effective than acarbose. Methanolic (MeOH) extract demonstrated the strongest inhibitory effects on AGEs, surpassing other extracts at 100 µg/ml. However, it exhibits no significant differences compared to Aminoguanidine (AG), suggesting its potential to become an alternative antiglycation source. Molecular docking revealed that five compounds, methyl stearate, methyl palmitate, methyl arachidate, methyl oleate, and methyl linoleate, had higher binding energies than acarbose for Human pancreatic alpha-amylase (HPA) (PDB ID: 5E0F). However, their binding energies with the receptor for advanced glycation end-products (RAGE) (PDB ID: 3O3U) were lower than AG (-3.515 kcal/mol), ranging from -5.760 to -6.510 kcal/mol with amino acid residue ARG-66 consistently involved in hydrogen bonding interactions. Analysis of pharmacokinetic properties confirmed that these compounds adhere to Lipinski’s Rule of Five, indicating their drug-like properties despite generally poor solubility and potential skin irritation. In summary, S. macrophylla fruits’ crude extracts, particularly the MeOH extract, show promise as antiglycation agents, necessitating further in vivo studies to validate these findings for drug development.
Abbas, A., Kalsoom, S., Hadda, T. B., & Naseer, M. M. (2014). Evaluation of 4-alkoxychalcones as a new class of antiglycating agents: A combined experimental and docking study. Research on Chemical Intermediates, 41(9), 6443–6462. https://doi.org/10.1007/s11164-014-1752-0
Adepu, S., & Ramakrishna, S. (2021). Controlled drug delivery systems: Current status and future directions. Molecules/Molecules Online/Molecules Annual, 26(19), 5905. https://doi.org/10.3390/molecules26195905
Agrawal, S. A., Dhamne, S. R. & Shinde, P. S. (2024). In-silico pharmacokinetic properties prediction of coumarins present in Aegle marmelos L. International Journal of Pharmaceutical Sciences and Research, 15(2), 800-07. https://doi.org/10.13040/IJPSR.0975-8232.15(3).800-07
Ahmad, I., Kuznetsov, A. E., Pirzada, A. S., Alsharif, K. F., Daglia, M., & Khan, H. (2023). Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Frontiers in Chemistry, 11, 1-15. https://doi.org/10.3389/fchem.2023.1145974
Ahmed, B., Sultana, R., & Greene, M. W. (2021). Adipose tissue and insulin resistance in obese. Biomedicine & Pharmacotherapy, 137, 111315. https://doi.org/10.1016/j.biopha.2021.111315
Ahmed, J., Khan, M. A., Khalid, M. E., Ahmad, I., Pervaiz, I., Khurshid, U., Khaliq, S., Khan, K. U. R., Arshad, M. A., Albadrani, G. M., Altyar, A. E., Sayed, A. A., Germoush, M. O., & Abdel-Daim, M. M. (2023). A comprehensive approach to derivatization: elemental composition, biochemical, and in silico studies of metformin derivatives containing copper and zinc complexes. Molecules/Molecules Online/Molecules Annual, 28(3), 1406. https://doi.org/10.3390/molecules28031406
Ahmmed, M. S., Shuvo, S. D., Paul, D., Karim, M. R., Kamruzzaman, M., Mahmud, N., Ferdaus, J., & Elahi, M. T. (2021). Prevalence of dyslipidemia and associated risk factors among newly diagnosed Type-2 Diabetes Mellitus (T2DM) patients in Kushtia, Bangladesh. PLOS Global Public Health, 1(12), e0000003. https://doi.org/10.1371/journal.pgph.0000003
Alade, A. A., Ahmed, S. A., Mujwar, S., Kikiowo, B., Akinnusi, P. A., Olubode, S. O., Olufemi, O. M., & Ohilebo, A. A. (2023). Identification of levomenthol derivatives as potential dipeptidyl peptidase-4 inhibitors: A comparative study with gliptins. Journal of Biomolecular Structure and Dynamics, 8(42), 4029-4047. https://doi.org/10.1080/07391102.2023.2217927
Alam, S., Sarker, M. M. R., Sultana, T. N., Chowdhury, M. N. R., Rashid, M. A., Chaity, N. I., Zhao, C., Xiao, J., Hafez, E. E., Khan, S. A., & Mohamed, I. N. (2022). Antidiabetic phytochemicals from Medicinal plants: Prospective candidates for new drug discovery and development. Frontiers in Endocrinology, 13, 800714. https://doi.org/10.3389/fendo.2022.800714
Al-Ghamdi, A. Y., Fadlelmula, A. A., Abdalla, M. O., & Zabin, S. A. (2021). Phytochemical screening, chemical composition, antimicrobial activity and in silico investigation of the essential oil of Coleus forskohlii L. collected from the Southwestern Region of Saudi Arabia. Journal of Essential Oil-bearing Plants, 24(1), 120–133. https://doi.org/10.1080/0972060x.2021.1901613
Arora, K., Tomar, P. C., & Mohan, V. (2021). Diabetic neuropathy: an insight on the transition from synthetic drugs to herbal therapies. Journal of Diabetes & Metabolic Disorders, 20, 1773-1784. https://doi.org/10.1007/s40200-021-00830-2
Aroua, L. M., Alosaimi, A. H., Alminderej, F. M., Messaoudi, S., Mohammed, H. A., Almahmoud, S. A., Chigurupati, S., Albadri, A. E., & Mekni, N. H. (2023). Synthesis, molecular docking, and bioactivity study of novel hybrid benzimidazole urea derivatives: A promising α-amylase and α-glucosidase inhibitor candidate with antioxidant activity. Pharmaceutics, 15(2), 457. https://doi.org/10.3390/pharmaceutics15020457
Belaiba, M., Aldulaijan, S., Messaoudi, S., Abedrabba, M., Dhouib, A., & Bouajila, J. (2023). Evaluation of biological activities of twenty flavones and in silico docking study. Molecules, 28(6), 2419. https://doi.org/10.3390/molecules28062419
Blahova, J., Martiniakova, M., Babikova, M., Kovacova, V., Mondockova, V., & Omelka, R. (2021). Pharmaceutical drugs and natural therapeutic products for the treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel, Switzerland), 14(8), 806. https://doi.org/10.3390/ph14080806
Bongarzone, S., Savickas, V., Luzi, F., & Gee, A. D. (2017). Targeting the receptor for Advanced Glycation Endproducts (RAGE): A medicinal chemistry perspective. Journal of Medicinal Chemistry, 60(17), 7213–7232. https://doi.org/10.1021/acs.jmedchem.7b00058
Bouyahya, A., Omari, N., Elmenyiy, N., Guaouguaou, F., Balahbib, A., Belmehdi, O., Salhi, N., Imtara, H., Mrabti, H. N., Shazly, M., & Bakri, Y. (2021). Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations, and clinical evidences; Challenges, guidance, and perspectives for future management of diabetes worldwide. Trends in Food Science & Technology, 115, 147-254, https://doi.org/10.1016/j.tifs.2021.03.032.
Chew, I. Y. Y. (2023). In-silico and in-vitro analysis of lipogenesis effect of Shorea macrophylla fruits’ crude extracts. [Unpublished Master Dissertation]. Universiti Malaysia Sarawak.
Chigurupati, S., Alharbi, F. S., Almahmoud, S., Aldubayan, M., Almoshari, Y., Vijayabalan, S., Bhatia, S., Chinnam, S., & Venugopal, V. (2021). Molecular docking of phenolic compounds and screening of antioxidant and antidiabetic potential of Olea europaea L. ethanolic leaves extract. Arabian Journal of Chemistry, 14(11), 103422. https://doi.org/10.1016/j.arabjc.2021.103422
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1). https://doi.org/10.1038/srep42717
Dariya, B., & Nagaraju, G. P. (2020). Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discovery Today, 25(9), 1614–1623. https://doi.org/10.1016/j.drudis.2020.07.003
Flores-Holguín, N., Frau, J., & Glossman-Mitnik, D. (2021). In silico pharmacokinetics, ADMET study and conceptual DFT analysis of two plant cyclopeptides isolated from Rosaceae as a computational peptidology approach. Frontiers in Chemistry, 9, 708364. https://doi.org/10.3389/fchem.2021.708364
Ganasegeran, K., Hor, C. P., Jamil, M. F. A., Suppiah, P. D., Noor, J. M., Hamid, N. A., Chuan, D. R., Manaf, M. R. A., Ch’ng, A. S. H., & Looi, I. (2021). Mapping the scientific landscape of diabetes research in Malaysia (2000-2018): A systematic scientometrics study. International Journal of Environmental Research and Public Health, 18(1), 318. https://doi.org/10.3390/ijerph18010318
Ghannay, S., Snoussi, M., Messaoudi, S., Kadri, A., & Aouadi, K. (2020). Novel enantiopure isoxazolidine and C-alkyl imine oxide derivatives as potential hypoglycemic agents: Design, synthesis, dual inhibitors of α-amylase and α-glucosidase, ADMET and molecular docking study. Bioorganic Chemistry, 104, 104270. https://doi.org/10.1016/j.bioorg.2020.104270
Imamura, F., Fretts, A. M., Marklund, M., Korat, A. V. A., Yang, W., Lankinen, M., Qureshi, W., Helmer, C., Chen, T., Virtanen, J. K., Wong, K., Bassett, J. K., Murphy, R., Tintle, N., Yu, C. I., Brouwer, I. A., Chien, K., Chen, Y., Wood, A. C., Forouhi, N. G. (2020). Fatty acids in the de novo lipogenesis pathway and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Medicine, 17(6), e1003102. https://doi.org/10.1371/journal.pmed.1003102
Jain, A., Jain, R., & Jain, S. (2020). Quantitative analysis of reducing sugars by 3,5-dinitrosalicylic acid (DNSA Method). In Basic techniques in biochemistry, Microbiology and molecular biology (pp. 181-183). Springer. https://doi.org/10.1007/978-1-4939-9861-6_43
Khan, R., Ooi, X. Y., Parvus, M., Valdez, L., & Tsin, A. (2019). Advanced Glycation End Products: formation, role in diabetic complications, and potential in clinical applications. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.89408
Kikiowo, B., Ogunleye, J. A., Iwaloye, O., & Ijatuyi, T. T. (2020). Therapeutic potential of Chromolaena odorata phyto-constituents against human pancreatic α-amylase. Journal of Biomolecular Structure and Dynamics, 40(4), 1801–1812. https://doi.org/10.1080/07391102.2020.1833758
Kim, K., Hong, S., Han, K. D., & Park, C. (2022). Assessing the validity of the criteria for the extreme risk category of atherosclerotic cardiovascular disease: A nationwide population-based study. Journal of Lipid and Atherosclerosis, 11(1), 73. https://doi.org/10.12997/jla.2022.11.1.73
Lankatillake, C., Luo, S., Flavel, M., Lenon, G. B., Gill, H., Huynh, T., & Dias, D. A. (2021). Screening natural product extracts for potential enzyme inhibitors: Protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. Plant Methods, 17, 3. https://doi.org/10.1186/s13007-020-00702-5
Luo, S., Gill, H., Dias, D. A., Li, M., Hung, A., Nguyen, L. T., & Lenon, G. B. (2019). The inhibitory effects of an eight-herb formula (RCM-107) on pancreatic lipase: enzymatic, HPTLC profiling and in silico approaches. Heliyon, 5(9), e02453. https://doi.org/10.1016/j.heliyon.2019.e02453
Magliano, D. J., & Boyko, E. J. (2021). IDF diabetes atlas. https://www.ncbi.nlm.nih.gov/books/NBK581940/
Mohamed, G. A., & Ibrahim, S. R. M. (2022). Garcixanthone E and Garcimangophenone C: New metabolites from Garcinia mangostana and their cytotoxic and alpha amylase inhibitory potential. Life, 12(11), 1875. https://doi.org/10.3390/life12111875
Odu, N. M., Akor, J., Eze, L. A., Nweze, J. A., Nweze, J. E., Orjiocha, S. I., Ejembi, D. O., Onyeyilim, E. L., & Nwanguma, B. C. (2023). Anti-inflammatory and antioxidant activities of selected fractions of Parinari kerstingii leaf extract. Tropical Journal of Natural Product Research, 7(10), 4954–4960. http://www.doi.org/10.26538/tjnpr/v7i10.35
Ononamadu, C., & Ibrahim, A. (2021). Molecular docking and prediction of ADME/drug-likeness properties of potentially active antidiabetic compounds isolated from aqueous-methanol extracts of Gymnema sylvestre and Combretum micranthum. BioTechnologia, 102(1), 85–99. https://doi.org/10.5114/bta.2021.103765
Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., & Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), 1984. https://doi.org/10.3390/ma14081984
Paulraj, J. A., Subharamanian, H., Suriyamoorthy, P., & Kanakasabapathi, D. (2014). Phytochemical screening, GC-MS analysis and enzyme inhibitory activity of Passiflora foetida L. Indo American Journal of Pharmaceutical Research, 4(8), 3526-3534. https://www.researchgate.net/publication/279961040_PHYTOCHEMICAL_SCREENING_GC-
Pirzada, A. S., Khan, H., Alam, W., Darwish, H. W., Elhenawy, A. A., Kuznetsov, A., & Daglia, M. (2024). Physicochemical properties, pharmacokinetic studies, DFT approach, and antioxidant activity of nitro and chloro indolinone derivatives. Frontiers in Chemistry, 12, 1360719. https://doi.org/10.3389/fchem.2024.1360719
Rajan, L., Palaniswamy, D., & Mohankumar, S. K. (2020). Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacological Research, 155, 104681. https://doi.org/10.1016/j.phrs.2020.104681
Ramasamy, R., Yan, S. F., & Schmidt, A. M. (2011). Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis of diabetes and its complications. Annals of the New York Academy of Sciences, 1243(1), 88–102. https://doi.org/10.1111/j.1749-6632.2011.06320.x
Rao, M. M. V., & Hariprasad, T. P. N. (2021). In silico analysis of a potential antidiabetic phytochemical erythrin against therapeutic targets of diabetes. In Silico Pharmacology, 9(5), 2-12. https://doi.org/10.1007/s40203-020-00065-8
Ryan, M., McInerney, D., Owens, D., Collins, P., Johnson, A., & Tomkin, G. H. (2000). Diabetes and the Mediterranean diet: A beneficial effect of oleic acid on insulin sensitivity, adipocyte glucose transport and endothelium‐dependent vasoreactivity. QJM: An International Journal of Medicine, 93(2), 85-91. https://doi.org/10.1093/qjmed/93.2.85
Sadeghi, M., Moradi, M., Madanchi, H., & Johari, B. (2021). In silico study of garlic (Allium sativum L.)-derived compounds molecular interactions with α-glucosidase. In Silico Pharmacology, 9, 11. https://doi.org/10.1007/s40203-020-00072-9
Salazar, J., Navarro, C., Ortega, Á., Nava, M., Morillo, D., Torres, W., Hernández, M., Cabrera, M., Angarita, L., Ortíz, R., Chacín, M., D’Marco, L., & Bermúdez, V. (2021). Advanced glycation end products: New clinical and molecular perspectives. International Journal of Environmental Research and Public Health/International Journal of Environmental Research and Public Health, 18(14), 7236. https://doi.org/10.3390/ijerph18147236
Sekhon-Loodu, S., & Rupasinghe, H. P. V. (2019). Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants. Frontiers in Nutrition, 6, 53. https://doi.org/10.3389/fnut.2019.00053
Sivagurunathan, A., & Xavier, B. I. (2014). GC-MS evaluation of bioactive compounds of Marsilea quadrifolia Linn. aquatic Fern. International Journal for Pharmaceutical Research Scholars, 3(1), 2277-7873.
Sokalingam, S., Raghunathan, G., Soundrarajan, N., & Lee, S. (2012). A study on the effect of surface lysine to arginine mutagenesis on protein stability and structure using green fluorescent protein. PloS One, 7(7), e40410. https://doi.org/10.1371/journal.pone.0040410
Sowmiya, V., Sakthi Priyadarsini, S., & Kumar, P. R. (2021). GC-MS Profiling of different fractions of Physalis minima Linn. leaves. Natural Volatiles and Essential Oils, 8(5), 12852-12859. https://www.nveo.org/index.php/journal/article/view/4063/3343
Starowicz, M., & Zieliński, H. (2019). Inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in european cuisine. Antioxidants, 8(4), 100. https://doi.org/10.3390/antiox8040100
Tambe, V., Kherade, D., Wagh, A., & Kothawade, P. (2022). A comparative molecular docking study of crocetin with multiple receptors for the treatment of Alzheimer’s disease. Biomedical and Biotechnology Research Journal, 6(2), 230. https://doi.org/10.4103/bbrj.bbrj_6_22
Twarda-Clapa, A., Olczak, A., Białkowska, A., & Koziołkiewicz, M. (2022). Advanced Glycation End-Products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells, 11(8), 1312. https://doi.org/10.3390/cells11081312
Yamazaki, S., Costales, C., Lazzaro, S., Eatemadpour, S., Kimoto, E., & Varma, M. V. (2019). Physiologically-based pharmacokinetic modeling approach to predict Rifampin-mediated intestinal P glycoprotein induction. CPT: Pharmacometrics and Systems Pharmacology, 8(9), 634–642. https://doi.org/10.1002/psp4.12458
Yu, F., Lian, X., Guo, H., McGuire, P., Li, R., Wang, R., & Yu, F. (2005). Isolation and characterization of methyl esters and derivatives from Euphorbia kansui (Euphorbiaceae) and their inhibitory effects on the human SGC-7901 cells. PubMed, 8(3), 528–535.
ISSN 0128-7702
e-ISSN 2231-8534
Share this article
Recent Articles