PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Pre-Press / JTAS-3248-2024

 

Effects of Tamanu Kernel Cake from Plantation By-product on Ruminal Digestibility and Methane Emission

Dimas Hand Vidya Paradhipta, Nu’man Firdaus, Ihshan Habi Ashshaadiq, Ali Agus and Budi Leksono

Pertanika Journal of Tropical Agricultural Science, Pre-Press

DOI: https://doi.org/10.47836/pjtas.48.4.06

Keywords: Methane, protein source, rumen, substitution, tamanu kernel cake

Published: 2025-05-30

The study investigates the effects of tamanu kernel cake (TKC) as protein substitution in the dietary concentrate on ruminal digestibility and methane emission. TKC is a by-product of the plantation industry of tamanu oil. The dietary concentrate consisted of wheat pollard, rice bran, corn grain, palm kernel cake, and soybean meal. The concentrate was formulated to contain crude protein and total digestible nutrients of approximately 15% and 65%, respectively. In the present study, TKC was used to substitute protein sources at different levels, such as 0% (T0), 50% (T1), and 100% (T2). Another dietary treatment was also prepared by adding 0.5 mineral salt to T2 (T3). All dietary treatments were incubated in rumen buffer according to the method of Tilley and Terry for 48 h at 39°C. In the results, the digestibility of dry matter and organic matter from dietary T1, T2, and T3 were not different compared to T0. In ruminal fermentation, dietary treatment did not affect total VFA and ammonia. Dietary T2 and T3 resulted in lower methane emissions than dietary T0 (p<0.05). Additional mineral salt in dietary T3 did not affect methane emission compared to dietary T2. The present study concluded that the substitute of protein source with TKC at 30% reduced methane production effectively without negatively affecting ruminal digestibility and fermentation.

  • Appuhamy, J. A. D. R. N., France, J., & Kebreab, E. (2016). Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Global Change Biology, 22(9), 3039-3056. https://doi.org/10.1111/gcb.13339

    Association of Official Analytical Chemists. (2016). Official methods of analysis (20th ed.). AOAC.

    Bodas, R., Prieto, N., Garcia-Gonźalez, R., Andrés, S., Giráldez, F. J. & López, S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Animal Feed Science and Technology, 176, 78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010

    Chaney, A. L., & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry, 8(2), 130-132. https://doi.org/10.1093/clinchem/8.2.130

    Chaovanalikit, A., & Wrolstad, R. E. (2004). Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. Food Chemistry and Toxicology, 69(1), 67–72. https://doi.org/10.1111/j.1365-2621.2004.tb17858.x

    Cortinhas, C. S., Botaro, B. G., Sucupira, M. C. A., Renno, F. P., & Santos, M. V. (2010). Antioxidant enzymes and somatic cell count in dairy cows fed with organic source of zinc, copper and selenium. Livestock Science, 127(1), 84–87. https://doi.org/10.1016/j.livsci.2009.09.001

    Dahlke, G. R., Jakub, D., & Goeser, J. (2020). A comparison of TDN and net energy calculations for estimating empty body weight change for beef cows using ADF, NRC-01 Lignin and TTNDFd Methodology. Iowa State University Animal Industry Report, 17(1), 14445. https://doi.org/10.31274/air.11805

    Gonzalez, A. G., & Herrador, M. A. (2007). A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends in Analytical Chemistry, 26(3), 227-238. https://doi.org/10.1016/j.trac.2007.01.009

    Grešáková, Ľ., Holodová, M., Szumacher-Strabel, M., Huang, H., Ślósarz, O., Wojtczak, J., Sowińska, N., & Cieślak, A. (2021). Mineral status and enteric methane production in dairy cows during different stages of lactation. BMC Veterinary Research, 17, 287. https://doi.org/10.1186/s12917-021-02984-w

    Hendawy, A. O., Sugimura, S., Sato, K., Mansour, M. M., Abd El-Aziz, A. H., Samir, H., Islam, M. A., Bostami, A. B. M. R., Mandour, A. S., Elfadadny, A., Ragab, R. F., Abdelmageed, H. A., & Ali, A. M. (2022). Effects of selenium supplementation on rumen microbiota, rumen fermentation, and apparent nutrient digestibility of ruminant animals: A review. Fermentation, 8(1), 4. https://doi.org/10.3390/fermentation8010004

    Hidayah, N., Kustantinah, K., Noviandi, C. T., Astuti, A., Hanim, C. & Suwignyo, B. (2023). Evaluation of rumen in vitro gas production and fermentation characteristics of four tropical seaweed species. Veterinary Integrative Sciences, 21(1), 229–238. https://doi.org/10.12982/VIS.2023.018

    Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483-2492. https://doi.org/10.2527/1995.7382483x

    Lee, S. J., Kim, H. S., Eom, J. S., Choi, Y. Y., Jo, S. U., Chu, G. M., Lee, Y., Seo, J., Kim, K. H. & Lee, S. S. (2021). Effects of olive (Olea europaea L.) leaves with antioxidant and antimicrobial activities on in vitro ruminal fermentation and methane emission. Animals, 11(7), 2008. https://doi.org/10.3390/ani11072008

    Leksono, B., Windyarini, E., & Hasnah, T. M. (2014). Budidaya Tanaman Nyamplung (Calophyllum inophyllum L.) untuk Bioenergi dan Prospek Pemanfaatan Lainnya [Cultivation of Nyamplung Plants (Calophyllum inophyllum L.) for Bioenergy and Other Utilization Prospects]. IPB press.

    Li, X., Liu, C., Chen, Y., Shi, R., Cheng, Z., Dong, H. (2017). Effects of mineral salt supplement on enteric methane emissions, ruminal fermentation, and methanogen community of lactating cows. Animal Science Journal, 88(8), 1049-1057. https://doi.org/10.1111/asj.12738

    Makkar, H. P. S., Bluemmel, M., Borowy, N. K. & Becker, K. (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture, 61(2), 161–165. https://doi.org/10.1002/jsfa.2740610205

    McDougall, E. I. (1948). Studies on ruminant saliva. I. The composition and output of sheep’s saliva. Biochemical Journal, 43(1), 99-109.

    Nørskov, N. P., Battelli, M., Curtasu, M. V., Olijhoek, D. W., Chassé, E., & Niselsen M. O. (2023). Methane reduction by quercetin, tannic, salicylic acids: Influence of molecular structures on methane formation and fermentation in vitro. Scientific Reports, 13, 16023. https://doi.org.org/10.1038/s41598-023-4341-w

    Paradhipta, D. H. V., Hanim, C., Agus, A., Leksono, B., Umroni, A., Maharani, S., Wardani, A.R.D., & Anam, M.S. (2023a). Study of nyamplung (Calophyllum inophyllum) kernel cake as an alternative protein source for ruminant feed and its effect on methane emission through in vitro. Livestock Research for Rural Development, 35(11), 105.

    Paradhipta, D. H. V. P., Seo, M. J., Jeong, S. M., Joo, Y. H., Lee, S. S., Seong, P. N., Lee, H. J., & Kim, S. C. (2023b). Antifungal and carboxylesterase-producing bacteria applied into corn silage still affected the fermented total mixed ration. Animal Bioscience, 36(5), 720-730. https://doi.org/10.5713/ab.22.0232

    Parashuramulu, S., Nagalakshmi, D., Rao, D. S., Kumar, M. K., & Swain, P. S. (2015). Effect of zinc supplementation on antioxidant status and immune response in buffalo calves. Animal Nutrition and Feed Technology, 15(2), 179–88. https://doi.org/10.5958/0974-181X.2015.00020.7

    Pavarini, D. P., Pavarini, S. P., Niehues, M. & Lopes, N. P. (2012) Exogenous influences on plant secondary metabolites levels. Animal Feed Science and Technology, 176, 5-16. https://doi.org/10.1016/j.anifeedsci.2012.07.002

    Pramono, S. (2005). Antiinflammatory effect of several Umbelliferae species. Hayati, 12(1), 7-10. https://doi.org/10.1016/S1978-3019(16)30316-3

    Shibata, M., & Terada, F. (2010). Factors affecting methane production and mitigation in ruminants. Animal Science Journal, 81(1), 2–10. https://doi.org/10.1111/j.1740-0929.2009.00687.x

    Son, A. R., Islam, M., Kim, S. H., Lee, S. S., & Lee, S. S. (2023). Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat stressed dairy streers. Journal of Animal Science and Technology, 65(1), 132-148. https://doi.org/10.5187/jast.2022.e100

    Tilley, J. M. A., & Terry, R. A. (1963). A Two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x

    Tsouko, E., Alexandri, M., Fernandes, K. V., Freire, D. M. G., Mallouchos, A. & Koutinas, A. A. (2019). Extraction of phenolic compounds from palm oil processing residues ad their application as antioxidants. Food Technology and Biotechnology, 57(1), 29-38. https://doi.org/10.17113%2Fftb.57.01.19.5784

    Umroni, A., Rianawati, H., Rahayu, A. A. D., Krisnawati, Leksono, B., & Paradhipta, D. H. V. (2024). Chemical compositions and plant secondary metabolites of nyamplung (Calophyllum inophyllum L) Oilseed press-cake from different locations. In IOP Conference Series: Earth and Environmental Science (p. 012001). IOP Publishing. https://doi.org/10.1088/1755-1315/1360/1/012001

    Vasta, V., Daghio, M., Cappucci, A., Buccioni, A., Serra, A., Viti, C. & Mele, M. (2019). Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methological approaches. Journal of Dairy Science, 102(5), 3781-3804. https://doi.org/10.3168/jds.2018-14985

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-3248-2024

Download Full Article PDF

Share this article

Recent Articles