e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
ASTM International. (2014). ASTM C878 / C878M-14a: 2014. Standard test method for restrained expansion of shrinkage-compensating concrete. ASTM International
ASTM International. (2016). ASTM C293 / C293M-16: 2016. Standard test method for flexural strength of concrete (using simple beam with center-point loading). ASTM International.
ASTM International. (2017). ASTM C496 / C496M-17: 2017. Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International.
British Standard Institution. (1983). BS 1881-122: 1983. Testing concrete. Method for determination of water absorption. British Standards Institute.
British Standard Institution. (1992). BS 882: 1992. Specification for aggregates from natural sources for concrete. British Standards Institute.
British Standard Institution. (1996). BS 12: 1996. Specification for Portland cement. British Standards Institute.
British Standard Institution. (2004). BS 12504-4: 2004. Testing concrete. Determination of ultrasonic pulse velocity. British Standards Institute.
British Standard Institution. (2011). BS 12390-3: 2011. Testing hardened concrete. Compressive strength of test specimens. British Standards Institute.
Elrahman, M. A., El Madawy, M. E., Chung, S. Y., Sikora, P., & Stephan, D. (2019). Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates. Applied Sciences, 9(7), 1-12. https://doi.org/10.3390/app9071447
Ezerskiy, V., Kuznetsova, N. V., & Seleznev, A. D. (2018). Evaluation of the use of the CBPB production waste products for cement composites. Construction and Building Materials, 190(30), 1117-1123. https://doi.org/10.1016/j.conbuildmat.2018.09.148
Ferreira, S. R., De Andrade, S. F., Lima, P. R. L., & Filho, R. D. T. (2017). Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and curaua´ fiber cement based composite systems. Construction and Building Materials, 139, 551-561. https://doi.org/10.1016/j.conbuildmat.2016.10.004
Fu, Y., Wang, X., Wang, L., & Li, Y. (2020). Foam concrete: A state-of-the-art and state-of-the-art practice review. Advances in Materials Science and Engineering, 2020, Article 6153602. https://doi.org/10.1155/2020/6153602
Hamad, A. J. (2014). Materials, production, properties and application of aerated lightweight concrete. International Journal of Materials Science and Engineering, 2(2), 152-157. https://doi.org/10.12720/ijmse.2.2.152-157
Hasan, K. M. F., Horvath, P. G., & Alpar, T. (2020). Potential natural fiber polymeric nanobiocomposites: A review. Polymers, 12(5), Article 1072. https://doi.org/10.3390/polym12051072
Hasan, K. M. F., Horvath, P. G., & Alpar, T. (2021). Lignocellulosic fiber cement compatibility: A state-of-the-art review. Journal of Natural Fibers, 1-26 https://doi.org/10.1080/15440478.2021.1875380
Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American Journal of Analytical Chemistry, 9(6), 303-310. https://doi.org/10.4236/ajac.2018.96023
Jalal, M. D., Tanveer, A., Jagdeesh, K., & Ahmed, F. (2017). Foam concrete. International Journal of Civil Engineering Research, 8(1), 1-14.
Jhatial, A. A., Inn, G. W., Mohamad, N., Alengaram, U. J., Mo, K. H., & Abdullah, R. (2017). Influence of polypropylene fibres on the tensile strength and thermal properties of various densities of foamed concrete. In IOP Conference Series: Materials Science and Engineering (Vol. 271, No. 1, p. 012058). IOP Publishing. https://doi.org/10.1088/1757-899X/271/1/012058
Kamaruddin, S., Goh, W. I., Jhatial, A. A., & Lakhiar, M. T. (2018). Chemical and fresh state properties of foamed concrete incorporating palm oil fuel ash and eggshell ash as cement replacement. International Journal of Engineering & Technology, 7(4.30), 350-354. https://doi.org/10.14419/ijet.v7i4.30.22307
Karade, S., & Aggarwal, L. (2011). Cement-bonded lignocellulosic composites for building applications. Metals Materials and Processes, 17(2), 129-140. https://10.1016/j.conbuildmat.2010.02.003
Kim, Y., Jiong, H., Jae, L., & Heeyou, B. (2010). Mechanical properties of fiber reinforced lightweight concrete containing surfactant. Advances in Civil Engineering, 10, 1-9. https://doi.org/10.1155/2010/549642
Kochova, K., Gauvin, F., Schollbach, K., & Brouwers, H. (2020). Using alternative waste coir fibres as a reinforcement in cement fibre composites. Construction and Building Materials, 231, Article 117121. https:// doi.org/10.1016/j.conbuildmat.2019.117121
Li, Q., Ibrahim, L., Zhou, W., Zhang, M., Fernando, G. F., Wang, L., & Yuan, Z. (2020). Holistic solution to natural fiber deterioration in cement composite using hybrid treatments. Cellulose, 27(7), 981-989. https://doi.org/10.1007/s10570-019- 02813-2
Lim, S. K., Tan, C. S., Lim, O. Y., & Lee, Y. L. (2013). Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. Construction and Building Materials, 46, 39-47. https://doi.org/10.1016/j.conbuildmat.2013.04.015
Mahmud, S., Hasan, K. M. F., Jahid, M. A., Mohiuddin, K., Zhang, R., & Zhu, J. (2021). Comprehensive review on plant-fiber reinforced polymeric biocomposites. Journal of Materials Science, 56, 7231-7264. https://doi.org/10.1007/s10853-021-05774-9
Mahzabin M. S., Hock, L. J., Hossain, M. S., & Kang, L. S. (2018). The influence of addition of treated kenaf fibre in the production and properties of fibre reinforced foamed composite. Construction and Building Materials, 178, 518-528. https://doi.org/10.1016/j.conbuildmat.2018.05.169
Majid, A., Anthony, L., Hou, S., & Nawawi, C. (2012). Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 30, 814-825. https://doi.org/10.1016/j.conbuildmat.2011.12.068
Memon, I. A., Jhatial, A. A., Sohu, S., Lakhiar, M. T., & Hussain, Z. (2018). Influence of fibre length on the behaviour of polypropylene fibre reinforced cement concrete. Civil Engineering Journal, 4(9), 2124-2131. https://doi.org/10.28991/cej-03091144
Mohammadhosseini, H., Awal, A. S. M. A., & Sam, A. R. M. (2016). Mechanical and thermal properties of prepacked aggregate concrete incorporating palm oil fuel ash. Sadhana, 41(10), 1235-1244. https://doi.org/10.1007/s12046-016-0549-9
Momeen, M., Islam, U., Mo, K. H., & Alengaram, U. J. (2016). Durability properties of sustainable concrete containing high volume palm oil waste materials. Journal of Cleaner Production, 137, 167-177. https://doi.org/10.1016/j.jclepro.2016.07.061
Moon, A. S., Varghese, V., & Waghmare, S. S. (2015). Foam concrete as a green building material. International Journal for Research in Emerging Science and Technology, 2(9), 25-32.
Müller, H. S., Breiner, R., Moffatt, J. S., & Haist, M. (2014). Design and properties of sustainable concrete. Procedia Engineering, 95, 290-304. https://doi.org/10.1016/j.proeng.2014.12.189
Munir, A., Abdullah, Huzaim, Sofyan, Irfandi, & Safwan. (2015). Utilization of palm oil fuel ash (POFA) in producing lightweight foamed concrete for non-structural building material. Procedia Engineering, 125, 739-746. https://doi.org/10.1016/j.proeng.2015.11.119
Muthusamy, K., & Zamri, N. A. (2016). Mechanical properties of oil palm shell lightweight aggregate concrete containing palm oil fuel ash as partial cement replacement. KSCE Journal of Civil Engineering, 20(4), 1473-1481. https://doi.org/10.1007/s12205-015-1104-7
Mydin, M. A. O., & Zamzani, N. (2018). Coconut fiber strengthen high performance concrete: Young’s modulus, ultrasonic pulse velocity and ductility properties. International Journal of Engineering & Technology, 7(2), 284-287. https://doi.org/10.14419/ijet.v7i2.23.11933
Mydin, M. A. O., Musa, M., & Ghani, A. N. A. (2016a). Fiber glass strip laminates strengthened lightweight foamed concrete: Performance index, failure modes and microscopy analysis. In AIP Conference Proceedings (Vol. 2016, No. 1, p. 020111). AIP Publishing LLC. https://doi.org/10.1063/1.5055513
Mydin, M. A. O., Noordin, N. M., Utaberta, N., Yunos, M. Y. M., & Segeranazan, S. (2016b). Physical properties of foamed concrete incorporating coconut fibre. Jurnal Teknologi, 78(5), 99-105. https://doi.org/10.11113/jt.v78.8250
Onuaguluchi, O., & Banthia, N. (2016). Plant-based natural fibre reinforced cement composites: A review. Cement and Concrete Composite, 68, 96-108. https://doi.org/10.1016/j.cemconcomp.2016.02.014
Ramamurthy, K., Nambiar, E. K. K., & Ranjani, G. I. S. (2009). A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388-396. https://doi.org/10.1016/j.cemconcomp.2009.04.006
Sari, K. A. M., & Sani, A. R. M. (2017). Applications of foamed lightweight concrete. MATEC Web of Conferences, 97, 1-5. https://doi.org/10.1051/matecconf/20179701097
Serri, E., Mydin, M. A. O., & Suleiman, M. Z. (2014). Thermal properties of oil palm shell lightweight concrete with different mix designs. Jurnal Teknologi, 70(1), 155-159. https://doi.org/10.11113/jt.v70.2507
Suhendro, B. (2014). Toward green concrete for better sustainable environment. Procedia Engineering, 95, 305-320. https://doi.org/10.1016/j.proeng.2014.12.190
Tangchirapat, W., & Jaturapitakkul, C. (2010). Strength, drying shrinkage, and water permeability of concrete incorporating ground palm oil fuel ash. Cement and Concrete Composites, 32(10), 767-774. https://doi.org/10.1016/j.cemconcomp.2010.08.008
Thakrele, M. H. (2014). Experimental study on foam concrete. International Journal of Civil, Structural, Environmental and Infrastructure Engineering Research and Development, 4(1), 145-158.
ISSN 1511-3701
e-ISSN 2231-8542