PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Agarwal, S. (2021). Major factors affecting the characteristics of starch based biopolymer films. European Polymer Journal, 160, Article 110788. https://doi.org/10.1016/j.eurpolymj.2021.110788

  • Andrade, R., Skurtys, O., Osorio, F., Zuluaga, R., Gañán, P., & Castro, C. (2014). Wettability of gelatin coating formulations containing cellulose nanofibers on banana and eggplant epicarps. LWT-Food Science and Technology, 58(1), 158-165. https://doi.org/10.1016/j.lwt.2014.02.034

  • ASTM D882. (2010). Standard test methods for tensile properties of thin plastic sheeting, Annual Book of ASTM Standards, 87(Reapproved), 3-5. https://doi.org/10.1520/D0882-10

  • ASTM E 96 (1995). Standard test methods for water vapor transmission of materials. ASTM International. https://doi.org/10.1520/E0096-00E01

  • Azeredo, H. M. C., Rosa, M. F., Henrique, L., & Mattoso, C. (2017). Nanocellulose in bio-based food packaging applications. Industrial Crops & Products, 97, 664-671. https://doi.org/10.1016/j.indcrop.2016.03.013

  • Bagheri, V., Ghanbarzadeh, B., Ayaseh, A., Ostadrahimi, A., Ehsani, A., Alizadeh-Sani, M., & Adun, P. A. (2019). The optimization of physico-mechanical properties of bionanocomposite films based on gluten/ carboxymethyl cellulose/cellulose nanofiber using response surface methodology. Polymer Testing, 78, Article 105989. https://doi.org/10.1016/j.polymertesting.2019.105989

  • Balakrishnan, P., Sreekala, M. S., Kunaver, M., Huskić, M., & Thomas, S. (2017). Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydrate Polymers, 169, 176-188. https://doi.org/10.1016/j.carbpol.2017.04.017

  • Bangar, S. P., & Whiteside, W. S. (2021). Nano-cellulose reinforced starch bio composite films-A review on green composites. International Journal of Biological Macromolecules, 185, 849-860. https://doi.org/10.1016/j.ijbiomac.2021.07.017

  • Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348-356. https://doi.org/10.1016/j.ijbiomac.2017.01.122

  • Cazón, P., Vázquez, M., & Velazquez, G. (2018). Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polymer Testing, 69, 536-544. https://doi.org/10.1016/j.polymertesting.2018.06.016

  • Da Silva, J. B. A., Nascimento, T., Costa, L. A. S., Pereira, F. V., Machado, B. A., Gomes, G. V. P., Assis, D. J., & Druzian, J. I. (2015). Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Materials Today: Proceedings, 2(1), 200-207. https://doi.org/10.1016/j.matpr.2015.04.022

  • Deng, Z., Jung, J., Simonsen, J., & Zhao, Y. (2017). Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). Food Chemistry, 232, 359-368. https://doi.org/10.1016/j.foodchem.2017.04.028

  • Deng, Z., Jung, J., Simonsen, J., & Zhao, Y. (2018). Cellulose nanocrystals pickering emulsion incorporated chitosan coatings for improving storability of postharvest bartlett pears (Pyrus communis) during long-term cold storage. Food Hydrocolloids, 84, 229-237. https://doi.org/10.1016/j.foodhyd.2018.06.012

  • Ferrer, A., Pal, L., & Hubbe, M. (2017). Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops & Products, 95, 574-582. https://doi.org/10.1016/j.indcrop.2016.11.012

  • Ghosh, T., Nakano, K., & Katiyar, V. (2021). Curcumin doped functionalized cellulose nanofibers based edible chitosan coating on kiwifruits. International Journal of Biological Macromolecules, 184, 936-945. https://doi.org/10.1016/j.ijbiomac.2021.06.098

  • Gopi, S., Amalraj, A., Jude, S., Thomas, S., & Guo, Q. (2019). Bionanocomposite films based on potato, tapioca starch and chitosan reinforced with cellulose nanofiber isolated from turmeric spent. Journal of the Taiwan Institute of Chemical Engineers, 96, 664-671. https://doi.org/10.1016/j.jtice.2019.01.003

  • Hajar, O. S., Nordin, N., Ayuni, N., Azman, A., Sya, I., Amin, M., & Kadir, R. (2021). Effects of nanocellulose fi ber and thymol on mechanical, thermal, and barrier properties of corn starch films. International Journal of Biological Macromolecules. 183, 1352-1361. https://doi.org/10.1016/j.ijbiomac.2021.05.082

  • Kania, D., Yunus, R., Omar, R., Abdul, S., & Mohamed, B. (2021). Physicochemical and engineering aspects rheological investigation of synthetic-based drilling fluid containing non-ionic surfactant pentaerythritol ester using full factorial design. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625, Article 126700. https://doi.org/10.1016/j.colsurfa.2021.126700

  • Karim, A. A., & Tie, A. P. (2008). Starch from the sago (metroxylon sagu) palm tree - Properties, prospects, and challenges as a new industrial source for food. Comprehensive Reviews in Food Science and Food Safety, 7(3), 215-228. https://doi.org/10.1111/j.1541-4337.2008.00042.x

  • Kim, H., Roy, S., & Rhim, J. (2021). Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. Journal of Environmental Chemical Engineering, 9(5), Article 106043. https://doi.org/10.1016/j.jece.2021.106043

  • Kubík, Ľ., & Zeman, S. (2013). Determination of oxygen permeability of polyethylene and polypropylene nonwoven fabric foils. Research in Agricultural Engineering, 59(3), 105-113.

  • Lavecchia, R., Medici, F., Piga, L., & Zuorro, A. (2015). Factorial design analysis of the recovery of flavonoids from bilberry fruit by-products. International Journal of Applied

  • Engineering Research, 10(23), 43555-43559.

  • Li, M., Tian, X., Jin, R., & Li, D. (2018). Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Industrial Crops and Products, 123, 654-660. https://doi.org/10.1016/j.indcrop.2018.07.043

  • Lopez-Polo, J., Silva-Weiss, A., Zamorano, M., & Osorio, F. A. (2020). Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: Food application. Carbohydrate Polymers, 231, Article 115702. https://doi.org/10.1016/j.carbpol.2019.115702

  • Maniglia, B. C., Denise, Laroque, D. A., de Andrade, L. M., Carciofi, B. A. M., Tenorio, J. A. S., & de Andrade, C. J. (2019). Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. Reactive and Functional Polymers, 144, Article 104368. https://doi.org/10.1016/j.reactfunctpolym. 2019.104368

  • Meneguin, A. B., Ferreira Cury, B. S., dos Santos, A. M., Franco, D. F., Barud, H. S., & da Silva Filho, E. C. (2017). Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydrate Polymers, 157, 1013-1023. https://doi.org/10.1016/j.carbpol.2016.10.062

  • Ortega-toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 38, 66-75. https://doi.org/10.1016/j.foodhyd.2013.11.011

  • Rodriguez, M., Oses, J., Ziani, K., & Mate, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840-846. https://doi.org/10.1016/j.foodres.2006.04.002

  • Patil, S., Bharimalla, A. K., Mahapatra, A., Dhakane-Lad, J., Arputharaj, A., Kumar, M., Raja, A. S. M., & Kambli, N. (2021). Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Bioscience, 44(Part A), Article 101352. https://doi.org/10.1016/j.fbio.2021.101352

  • Paula, A., Lamsal, B., Luiz, W., Magalhães, E., & Mottin, I. (2019). Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 139, 1151-1161. https://doi.org/10.1016/j.ijbiomac.2019. 08.115

  • Punia, S., Scott, W., Dunno, K. D., Armstrong, G., Dawson, P., & Love, R. (2022). Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. International Journal of Biological Macromolecules, 203, 350-360. https://doi.org/10.1016/j.ijbiomac.2022.01.133

  • Rahayoe, S. (2015). Control of characteristics of chitosan film as fruit coating with the

  • variation of types and additive compositions in making coating solutions (Doctoral dissertation). Gadjah Mada University, Indonesia. https://lib.ugm.ac.id/

  • Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63-70. https://doi.org/10.1016/j.postharvbio.2006.11.015

  • Riva, S. C., Opara, U. O., & Fawole, O. A. (2020). Recent developments on postharvest application of edible coatings on stone fruit: A review. Scientia Horticulturae, 262, Article 109074. https://doi.org/10.1016/j.scienta.2019.109074

  • Santacruz, S., Rivadeneira, C., & Castro, M. (2015). Edible films based on starch and chitosan. Effect of starch source andconcentration, plasticizer, surfactant’s hydrophobic tail andmechanical treatment. Food Hydrocolloids, 49, 89-94. https://doi.org/10.1016/j.foodhyd.2015.03.019

  • Sapper, M., Bonet, M., & Chiralt, A. (2019). Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. LWT, 116, Article 108574. https://doi.org/10.1016/j.lwt.2019.108574

  • Serpa, A., & Vel, J. (2016). Vegetable nanocellulose in food science: A review. Food Hydrocolloids 57, 178-186. https://doi.org/10.1016/j.foodhyd.2016.01.023

  • Shih, Y. T., & Zhao, Y. (2021). Development, characterization and validation of starch based biocomposite films reinforced by cellulose nanofiber as edible muffin liner. Food Packaging and Shelf Life, 28, Article 100655. https://doi.org/10.1016/j.fpsl.2021.100655

  • Silva, A. P. M., Oliveira, A. V., Pontes, S. M. A., Pereira, A. L. S., Souza Filho, M. de sá M., Rosa, M. F., & Azeredo, H. M. C. (2019). Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydrate Polymers, 211, 209-216. https://doi.org/10.1016/j.carbpol.2019.02.013

  • Soofi, M., Alizadeh, A., Hamishehkar, H., Almasi, H., & Roufegarinejad, L. (2021). Preparation of nanobiocomposite film based on lemon waste containing cellulose nanofiber and savory essential oil: A new biodegradable active packaging system. International Journal of Biological Macromolecules, 169, 352-361. https://doi.org/10.1016/j.ijbiomac.2020.12.114

  • Soradech, S., Nunthanid, J., Limmatvapirat, S., & Luangtana-anan, M. (2017). Utilization of shellac and gelatin composite film for coating to extend the shelf life of banana. Food Control, 73(Part B), 1310-1317. https://doi.org/10.1016/j.foodcont.2016.10.059

  • Soto-Muñoz, L., Palou, L., Argente-Sanchis, M., Ramos-López, M. A., & Pérez-Gago, M. B. (2021). Optimization of antifungal edible pregelatinized potato starch-based coating formulations by response surface methodology to extend postharvest life of ‘Orri’ mandarins Lourdes SotoMun. Scientia Horticulturae, 288, Article 110394. https://doi.org/10.1016/j.scienta.2021.110394

  • Stachowiak, N., Kowalonek, J., & Kozlowska, J. (2020). Effect of plasticizer and surfactant on the properties of poly(vinyl alcohol)/chitosan films. International Journal of Biological Macromolecules, 164, 2100-2107. https://doi.org/10.1016/j.ijbiomac.2020.08.001

  • Sun, X., Wu, Q., Picha, D. H., Ferguson, M. H., Ndukwe, I. E., & Azadi, P. (2021). Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydrate Polymers, 259, Article 117764. https://doi.org/10.1016/j.carbpol.2021.117764

  • Syafri, E., Jamaluddin, Wahono, S., Irwan, A., Asrofi, M., Sari, N. H., & Fudholi, A. (2019). Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites. International Journal of Biological Macromolecules, 137, 119-125. https://doi.org/10.1016/j.ijbiomac.2019.06.174

  • Thakur, R., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2018). Development and application of rice starch based edible coating to improve the postharvest storage potential and quality of plum fruit (Prunus salicina). Scientia Horticulturae, 237, 59-66. https://doi.org/10.1016/j.scienta.2018.04.005

  • Thakur, Rahul, Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079-1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190

  • Tibolla, H., Pelissari, F. M., Martins, J. T., Lanzoni, E. M., Vicente, A. A., Menegalli, F. C., & Cunha, R. L. (2019). Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydrate Polymers, 207, 169-179. https://doi.org/10.1016/j.carbpol.2018.11.079

  • Ventura-Aguilar, R. I., Bautista-Baños, S., Flores-García, G., & Zavaleta-Avejar, L. (2018). Impact of chitosan based edible coatings functionalized with natural compounds on Colletotrichum fragariae development and the quality of strawberries. Food Chemistry, 262, 142-149. https://doi.org/10.1016/j.foodchem.2018.04.063

  • Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, 116, 88-97. https://doi.org/10.1016/j.postharvbio.2016.01.011

  • Widaningrum, W., Miskiyah, M., & Winarti, C. (2015). Edible coating berbasis pati sagu dengan penambahan antimikroba minyak sereh pada paprika: Preferensi konsumen dan mutu vitamin C [Sago starch-based edible coating with antimicrobial addition of lemongrass oil to peppers: Consumer preferences and vitamin c]. Agritech Journal, 35(1), 53-60. https://doi.org/10.22146/agritech.9419

  • Xu, J., Xia, R., Zheng, L., Yuan, T., & Sun, R. (2019). Plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nano fiber with enhanced mechanical properties. Carbohydrate Polymers, 224, Article 115164. https://doi.org/10.1016/j.carbpol.2019.115164

  • Yuan, Y., & Chen, H. (2021). Preparation and characterization of a biodegradable starch-based antibacterial film containing nanocellulose and polyhexamethylene biguanide. Food Packaging and Shelf Life, 30, Article 100718. https://doi.org/10.1016/j.fpsl.2021.100718

  • Zhong, Y., & Li, Y. (2011). Effects of surfactants on the functional and structural properties of kudzu (Pueraria lobata) starch/ascorbic acid films. Carbohydrate Polymers, 85(3), 622-628. https://doi.org/10.1016/j.carbpol.2011.03.031

  • Zhu, F. (2019). Food Hydrocolloids Recent advances in modifications and applications of sago starch. Food Hydrocolloids, 96, 412-423. https://doi.org/10.1016/j.foodhyd.2019.05.035

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles